Consequences of Venous Disorders

John Statler, M.D., FSIR

Virginia Interventional and Vascular Associates
Department of Radiology and Radiological Sciences
Uniformed Services University
Consequences of Venous Disorders

- Financial Disclosure
- Conflict of Interest
- Off Label Usage
Consequences of Venous Disorders

• Superficial Venous Disease
• Deep Venous Disease
• Embolic Disease
Consequences of Venous Disorders

• Superficial Venous Disease
• Deep Venous Disease
• Embolic Disease
• It’s all connected
• Don’t exist in a vacuum
Consequences of Venous Disorders

• Anatomy
 – Superficial Venous System
 • Drains skin
 • All superficial veins drain into LSV/GSV
 – Deep Venous System
 • Drains muscle
 • Drains superficial veins
 • TV>PV>SFV>CFV>CIV>IVC
Superficial Venous Disease

- Epidemiology
- Pathophysiology
- Presentation
- Treatment
- Outcomes
Superficial Venous Disease

- Epidemiology
 - 50% of adults
 - Advancing Age
 - Gender
 - Obesity
Superficial Venous Disease

- Pathophysiology (leg)
 - Calf Muscle Pump (peripheral heart)
 - Calf muscles, fascial compartments
 - Superficial venous compartment
 - Deep venous compartment
 - Outflow vein (and valves)
 - Malfunctions in sedentary patients
 - Malfunctions in obese patients
Superficial Venous Disease

• Pathophysiology (chest)
 – Thoracoabdominal pump
 • Inspiration decreases thoracic pressure
 • RA receives augmented venous return
 – Diminished in obese patients
 – Diminished in COPD patients
 – Diminished in CHF patients
Superficial Venous Disease

- Pathophysiology
 - Venous Hypertension
 - Obesity
 - Outflow obstruction
Superficial Venous Disease

- **Pathophysiology**
 - Venous Hypertension
 - Obesity
 - Outflow obstruction
 - Valvular Incompetence
Superficial Venous Disease

- Pathophysiology
 - Valvular Incompetence
 - Heredity
 - Pregnancy
 - Progesterone
 - Circulating blood volume
 - Trauma
 - Thrombophlebitis
 - Prolonged Standing
 - We’ll talk more about this later
Superficial Venous Disease

• Presentation
 – Aesthetics
 – Pain
 – Burning
 – Itching
 – Heaviness
 – “Cellulitis”
 – Thrombophlebitis
 – RLS
Superficial Venous Disease

• Physical Exam
 – Gaiter Area
 – Posterior Calf
 – Lateral Thigh/ LSVC
Superficial Venous Disease

• Physical Exam
 – Telangiectasia C1
 – Reticular Veins C1
 – Varicose Veins C2
Superficial Venous Disease

• Physical Exam
 – Edema C3
 – Staining/Eczema C4a
 – Lipodermatosclerosis C4b
 – Healed Ulcer C5
 – Active Ulcer C6
Superficial Venous Disease

• Imaging
 – Ultrasound
 • Venous mapping
 • DVT study is less helpful
Superficial Venous Disease

- **Treatment**
 - **Conservative**
 - Risk factor modification
 - Weight loss
 - Increase activity
 - Compression garments
Superficial Venous Disease

• Treatment
 – Thermal Ablation (EVLT/RFA)
 • Energy delivered to vein wall to sclerose incompetent segment
 • Works well for straight veins
 • Skin veins drain into (competent) deep veins
Superficial Venous Disease

- Thermal Ablation Procedure
 - Compression hose
 - Ambulate 30 min daily
 - Ibuprofen
 - U/S in 2 weeks
Superficial Venous Disease

- Thermal Ablation Outcomes
 - EVLT
 - 96% primary closure (Auckland)
 - RFA
 - 96% primary closure (Ontario)
Superficial Venous Disease

• Thermal Ablation Outcomes
 – Complications
 • Pain 100%
 • Bruising
 • Phlebitis
 • Nerve Injury/Paresthesia 0-12%
 • Incomplete closure 0-3%
 • DVT/PE 0-16%
 • Skin burn 0-7%
 • Infection
Superficial Venous Disease

• Thermal Ablation Outcomes
 – Complications
 – Failures
 • Obesity
 • Vein Size
 • Compression (compliance)
Superficial Venous Disease

- Non-thermal Ablation
 - Pharmacomechanical
 - Adhesive
Superficial Venous Disease

- Treatment
 - Thermal Ablation (EVLT/RFA)
 - Ambulatory Phlebectomy
 - Works well for large tortuous veins
 - Controls phlebitis
 - Often in conjunction with EVLT
 - Bleeding
 - >95% effective
Superficial Venous Disease

- Treatment
 - Ambulatory Phlebectomy
Superficial Venous Disease

- **Treatment**
 - Thermal Ablation (EVLT/RFA)
 - Ambulatory Phlebectomy
- Works well for large tortuous veins
- Often in conjunction with EVLT
- Bleeding
- >95% effective
Superficial Venous Disease

- **Treatment**
 - **Perforating Veins**
 - Foam sclerotherapy
 - Varithena
 - STS/Asclera foam
 » 1 mL 0.5%
 » 1:4 air mixture
Superficial Venous Disease

- **Treatment**
 - **Perforating Veins**
 - Foam sclerotherapy
 - Varithena
 - STS/Asclera foam
 » 1 mL 0.5%
 » 1:4 air mixture
Superficial Venous Disease

• Treatment
 – Perforating Veins
 • Outcomes
 – > 70% closure
 – Varies with size
 • Complications
 – Failed Closure
 – Reconstitute Trunk
 – DVT (usu. calf vein)
Superficial Venous Disease

- Treatment
 - Thermal Ablation (EVLT/RFA)
 - Ambulatory Phlebectomy
 - Sclerotherapy
 - Perforating veins
 - Superficial veins (reticular, thread)
Superficial Venous Disease

• Case Presentation #1
 – 65 year-old retired teacher
 – 30 year history of pain and swelling
 – RLS
Superficial Venous Disease

• Case Presentation #1
Superficial Venous Disease

• Case Presentation #2
 – 44 year old AA male
 – Referred by primary MD
 – 50 yard RLE claudication
 – DM II, 30 pk yr smoker, HTN, Chol, fam hx
Superficial Venous Disease

• Case Presentation #2
 – 44 year old AA male
 – Referred by primary MD
 – 50 yard RLE claudication
 – DM II, 30 pk yr smoker
 – Biphasic Doppler on right
 – 1+ DP on the left
 – ABI R: 0.86 L: 0.96
Superficial Venous Disease

• 44 year old AA male
 – Referred by primary MD
 – 50 yard RLE claudication
 – DM II, 30 pk yr smoker
 – Biphasic Doppler on right
 – 1+ DP on the left
 – ABI R: 0.86 L: 0.96
Superficial Venous Disease

• Case Presentation #2
 – 44 year old AA male
 – Referred by primary MD
 – 50 yard RLE claudication
 – Biphasic Doppler on right
 – 1+ DP on the left
 – ABI R: 0.86 L: 0.96
 – Referred for CTA
 – Referred for venous mapping
Superficial Venous Disease

- Case Presentation #2
 - CTA shows diffuse calcific disease
 - Mapping shows severe GSV reflux
Superficial Venous Disease

• Case Presentation #2
 – 12 mm RCIA stent
 – EVLT of R GSV
 (after much deliberation)
Superficial Venous Disease

- Case Presentation #2
 - “Come to Jesus” Talk
 - ASA QD
 - 30 min walking QD
 - Smoking cessation
Superficial Venous Disease

- Case Presentation #2
 - “Come to Jesus” Talk
 - ASA QD
 - 30 min walking QD
 - Smoking cessation
 - Able to walk ad lib
Superficial Venous Disease

- Case Presentation #2
 - “Come to Jesus” Talk
 - ASA QD
 - 30 min walking QD
 - Smoking cessation
 - STEMI 6 weeks later
 - Remaining left GSV used as conduit
Superficial Venous Disease

- **Summary**
 - SVD is common (especially in an aging population)
 - SVD is a chronic medical condition with real medical consequences (including pain, dysfunction, up to and including limb loss)
 - There are safe and effective conservative and minimally invasive therapies for SVD
Deep Venous Disease

- Epidemiology
- Pathophysiology
- Presentation
- Treatment
- Outcomes
Deep Venous Disease

- Epidemiology
 - Advancing age
 - Gender
 - Obese
 - Heredity
 - Trauma
 - Prior DVT
Deep Venous Disease

- Pathophysiology
 - Reflux/Insufficiency/Stasis
 - Thrombosis
 - Acute
 - Chronic
 - Both
 - Outflow Obstruction
 - Syndromes
Deep Venous Disease

- **Reflux**
 - Valve function
 - Open to allow forward flow
 - Close to prevent standing column of blood
Deep Venous Disease

• Reflux
 – Treatment
 • Compression for life
Deep Venous Disease

• Outflow Obstruction
 – DVT
 – Anatomic compression syndromes
 (more on this later)
Superficial Venous Intervention

- Deep Veins (obstruction)

- 32 year old male

- 4 years s/p femoral DVT

- CC swelling, superficial varicose veins
Deep Venous Disease

• Thrombosis
 – Epidemiology
 – Pathophysiology
 – Complications
 – Diagnosis
 – Treatment
 – Outcomes
Deep Venous Disease

• Epidemiology
 – 300,000 new cases DVT annually
 – Males > females
 – 120,000 will suffer recurrent VTE
 – DVT is third most common CV disease
 – $24 billion to treat DVT annually
Deep Venous Disease

- Etiology of DVT
 - Virchow’s Triad
 - Malignancy
 - Obesity
 - Pregnancy
 - Previous VTE
 - General anesthesia
 - Hereditary thrombophilia
 - Anatomy
Deep Venous Disease

• Acute DVT Complications
 – Local
 • Pain
 • Phlegmasia
 – Distant
 • Pulmonary Embolism
Deep Venous Disease

• Chronic DVT Complications
 – Local
 • Pain
 • Edema
 • Post Thrombotic Syndrome
 – Distant
 • Pulmonary Hypertension
Deep Venous Disease

- DVT Diagnosis
 - Clinical Suspicion (Well’s Predictors)
 - Malignancy
 - Paralysis/immobilization
 - Bedridden
 - Major surgery
 - Previous DVT
 - Complete leg swelling
 - Calf swelling >3 cm c/w contralateral
Deep Venous Disease

• DVT Diagnosis
 – Clinical Suspicion
 – Physical Exam
 – D-Dimer
 – Ultrasound
 • NPV > 99%
 • Poor at determining acuity
Deep Venous Disease

• Treatment
 – ACCP
 • Distal asymptomatic DVT
 – Serial imaging
 • Distal symptomatic DVT
 – Treat
 • Proximal
 – Treat
Deep Venous Disease

- Treatment
 - Acute
 - Non-fractionated heparin
 - LMWH
 - pregnancy
 - malignancy
 - Subacute
 - Warfarin
 - NOAC
Deep Venous Disease

- Treatment of Iliofemoral DVT
 - (These patients are different)
 - More symptomatic
 - Greater disability
 - Greater morbidity
 - Predisposed to long-term complications
Deep Venous Disease

- Treatment of Iliofemoral DVT
 - Anticoagulation
 - Does prevent propagation
 - Does reduce risk of PE
 - Does not resolve clot
 - Does not prevent valve damage
 - Does not prevent post thrombotic syndrome
Deep Venous Disease

• Post Thrombotic Syndrome
 – Chronic venous insufficiency in DVT patients
 – Ambulatory venous venous hypertension
 • Capillary damage
 • Interstitial leakage
 • Fibrin deposition
 – 25% will develop severe symptoms
 – Permanent disability
Deep Venous Disease

- Post Thrombotic Valve Dysfunction
 - Thrombus extends through valves
 - Even if recannalized, valves remain fixed
Deep Venous Disease

- Catheter Directed Therapy (CDT) for Iliofemoral DVT
 - Infusion
 - Mechanical
 - Pharmacomechanical
Deep Venous Disease

• Rational for CDT
 – (These patients are different)
 – Remove thrombus
 – Relieve pain
 – Restore function
 – Reduce PE
 – Preserve valve function
 – Reduce PTS
Deep Venous Disease

• Thrombolysis
 – Patient Selection
 • Symptomatic acute iliofemoral DVT
 • No prior ipsilateral proximal DVT
 • Ambulatory
 • Reasonable life expectancy
 • Phlegmasia
 • Worsening symptoms despite systemic therapy
 • Symptomatic with extension to IVC (iliocaval)
Deep Venous Disease

- Infusion (Pharmacologic) Thrombolysis
 - Catheter placed within thrombus
 - TPA infusion
 - ICU admission
 - Bleeding complications
Deep Venous Disease

• Mechanical Thrombolysis
 – Various devices
 – Remove thrombus
 – May not be “stand alone”
 – Hemolysis
 – Lytic administration
Deep Venous Disease

• Pharmacomechanical Thrombolysis
 – Combine thrombolytics and mechanical clot removal
 – Allows for single session treatment
 – Few major bleeding complications
Deep Venous Disease

• Combination Therapy
 – One or more of the above
 – Angioplasty and stenting
 – Useful for acute on chronic disease
Case

- 35 year old female admitted with 5 day history of worsening, severe RLE swelling
- PE 3 years prior due to contraceptive ring
- US extensive RLE DVT
Case
Deep Venous Disease

• Thrombolysis Outcomes
 – Technical success > 90%
 – Primary patency > 80% at one year
 – Reduction in PTS
 (time to recanalization)
 – Complications
 • Failure to lyse
 • Major hemorrhage
Deep Venous Disease

• Summary
 – Deep venous disease is a source of acute and chronic morbidity
 – When patients remain symptomatic despite adequate systemic therapy, CDT may be indicated
 – CDT may improve long-term outcomes when compared to anticoagulation alone
 – Many patients will require life long therapy (compression and/or anticoagulation)
Anatomic Compression

• Venous Compression Syndromes
 – Veins are thin walled
 – Easily compressed by adjacent structures
 – Leads to stenosis and thrombosis
Anatomic Compression

- Venous Thoracic Outlet Syndrome
 - Scalene Anticus Syndrome
 - Cervical Rib Syndrome
 - Costoclavicular Syndrome
 - Paget-Schroeder
Anatomic Compression

• Case
 – 21 year old “pitcher”
 – 36 hours acute RUE pain and swelling
 – Brachial DVT and Cephalic SVT
Anatomic Compression

- **May Thurner Syndrome**
 - RCIA compression of LCIV
 - Spur formation in iliac vein
 - Suspect in young patient without predisposing factors
Anatomic Compression

• May Thurner Syndrome
 – 60 year old female
 – 3 week h/o LLE swelling s/p travel
Anatomic Compression

- May Thurner
 - 19 year old male 1 year s/p “GSW” to head
 - 3 week h/o leg swelling
 - Extensive DVT in LLE
Anatomic Compression

• Summary
 – Anatomic compression should be suspected in young patients with no risk factors for DVT
 – CDT is effective in the treatment of these disorders
 – Combination therapy (including surgery) is typically required
Embolic Disease

- Epidemiology
- Pathophysiology
- Presentation
- Treatment
- Outcomes
Embolic Disease

• Epidemiology
 – 300,000-600,000 cases annually (1 in 1,000)
 – 50,000-200,000 deaths
 – Male = female
 – Advancing age, Obesity, Heredity
 – Leading cause of death in hospitalized patients
 – Mortality has decreased over the last 25 years
Embolic Disease

• Pathophysiology
 – Thrombus dislodged from lower extremity
 – Travels through heart, occluding pulmonary arteries
 – Ventilation perfusion mismatch, increased pulmonary vascular resistance, and reduced cardiac output combine to result in hypoxia
Embolic Disease

- Presentation (variable)
 - Pleuritic chest pain
 - Shortness of breath
 - Tachycardia
 - Tachypnea
 - Hypoxia
 - Hypotension
 - Hemodynamic collapse
Embolic Disease

- **Pulmonary Embolism Diagnosis**
 - Clinical Suspicion
 - Hemoptysis
 - DVT
 - Pleuritic chest pain
Embolic Disease

- Pulmonary Embolism Diagnosis
 - Clinical Suspicion
 - Modified Wells Criteria
 - DVT (3)
 - No other likely diagnosis (3)
 - Previous VTE
 - Tachycardia
 - Recent Surgery/ Immobilization
 - Hemoptysis
 - Cancer
Embolic Disease

• Pulmonary Embolism Diagnosis
 – Clinical Suspicion
 • Pulmonary Embolism Rule-out Criteria
 – Rules out PE when absent:
 » Unilateral LE swelling
 » Hemoptysis
 » Prior DVT/PE
 » Recent surgery/trauma
 » Age > 50
 » Tachycardia
Embolic Disease

• Pulmonary Embolism Diagnosis
 – Clinical Suspicion
 – Physical Exam
 – D-Dimer
 – EKG
 – ABG
 – CT PA gram
Embolic Disease

• Treatment
 – Prevention
 • Ambulation
 • Compression
 • Anticoagulation
 • IVC filtration
 – Anticoagulation
 – Thrombolysis
Embolic Disease

• IVC Filtration
 – Rationale
 • Places a mechanical barrier between the site of thrombosis and the lungs (Nature’s Filter)
 • Regardless of coagulation status
Embolic Disease

• IVC Filtration
 – ACCP Indications
 • Acute PE or proximal DVT with contraindication to anticoagulation
 • VTE in unstable patient in addition to anticoagulation
 • Massive PE undergoing CDT
Embolic Disease

- IVC Filtration
 - AHA Indications
 - Acute PE or proximal DVT with contraindication to anticoagulation
 - VTE in unstable patient in addition to anticoagulation
 - VTE with failure of anticoagulation therapy
Embolic Disease

• IVC Filtration
 – SIR Indications:
 • PE or Proximal DVT and…..
 • Progression of VTE disease on adequate anticoagulation
 • Complication of anticoagulation
 • Poor cardiopulmonary reserve
 • Free floating thrombus
 • Pre-op lysis
Embolic Disease

• IVC Filtration
 – SIR Expanded Indications (Prophylaxis)
 • Trauma
 – Closed head injury, Spinal cord injury, Long bone fractures
 • Multiple risk factors in pre-op patient
 • Malignancy
 • DVT/ PE in pregnancy
 • Bariatric Surgery, Neurosurgery
Embolic Disease

• IVC Filtration
 – Devices
 • Greenfield 1973
 • Stainless steel
 • The Standard
Embolic Disease

- IVC Filtration
 - Devices
 - Bird’s Nest 1984
 - 40 mm IVC
Embolic Disease

- IVC Filtration
 - Devices
 - Simon Nitinol 1989
 - Low profile
 - Expands in-vivo
Embolic Disease

- IVC Filtration
 - Devices
 - Gunther Tulip 1997
 - Apical hook
Embolic Disease

- IVC Filtration
 - Devices
 - Gunther Tulip 1997
 - Apical hook
 - “Optional”
Embolic Disease

• IVC Filtration
 – Devices
 • G2 2007
 • Based on Recovery
 • Failed deployment
 • Prone to perforation
 • Prone to fracture
 • Led to FDA communications 2010 and 2014
Embolic Disease

• IVC Filtration
 – Devices
 • Convertible 2016
 • Leaves stent behind
Embolic Disease

• IVC Filtration Outcomes
 – Placements have been decreasing since 2010
 – Reduce risk of PE
 – Do not reduce overall mortality
 – Less than half of optional filters are actually ever removed
Embolic Disease

• IVC Filtration
 – Retrievable filters
 – Retrieval rates are poor
 • Technically impossible
 • Lost to follow-up
 • Develop permanent indication
Embolic Disease

- IVC Filtration
 - Complications
 - IVC Thrombosis 2%
 - Chicken vs. Egg
 - Recurrent PE 5%
Embolic Disease

• IVC Filtration
 – Complications
 • IVC Thrombosis
 • Recurrent PE 5%
 • Filter Complications
 – Migration
 – Fracture
 – Embolization
Embolic Disease

- Anticoagulation
 - ACCP
 - Observation for low risk sub segmental PE
 - UFH/LMWH for acute PE
 - VKA or NOAC for 3 months for larger PE
 - Systemic (not CDT) thrombolytics for PE with hypotension
Embolic Disease

• Anticoagulation
 – ACCP
 • Observation for low risk sub segmental PE
 • UFH/LMWH for acute PE
 • VKA or NOAC for 3 months for larger PE
 • Systemic (not CDT) thrombolytics for PE with hypotension
 • CDT for hypotensive patients with bleeding risk, failed systemic lytics, or impending death
Embolic Disease

• Catheter Directed Therapy
 – Rationale for CDT
 • Administer thrombolytics directly into thrombus
 • Better drug delivery, less systemic effect
 – (These patients are different)
 • Correct RV strain/ hemodynamics
 • Improve ventilation/perfusion
 • Prevent chronic pulmonary hypertension
Embolic Disease

• Catheter Directed Therapy
 – ACC/AHA CDT Indications
 • Massive PE
 – Hypotension
 – Shock
 • Sub massive PE
 – RV strain
 – PESI indicating poor outcome
Embolic Disease

• Catheter Directed Therapy
 – Only for the sickest
 – Invasive ICU admission
 – Bleeding complications
 – Contraindications
Embolic Disease

• **Anticoagulation Outcomes**
 – <5% mortality in first year
 – <5% recurrence in first year
 – <5% develop pulmonary hypertension
Embolic Disease

- Catheter Directed Therapy Outcomes
 - Lower in hospital mortality
 - Improvement in hemodynamics
 - ? Pulmonary hypertension
 - ? Overall survival
Embolic Disease

• Summary
 – VTE is common and can be life threatening
 – Anticoagulation is good for treating the majority of DVT and PE
 – Filters are imperfect but getting better
 – Filters are probably overused
 – CDT can rapidly improve hemodynamics in very sick patients with VTE
Consequences of Venous Disorders

• References
 – ACCP management of VTE: http://journal.chestnet.org/article/S0012-3692(15)00335-9/fulltext
Consequences of Venous Disorders

• References
Consequences of Venous Disorders

• References
What a relief!!
Enjoy the rest of your day

GOLDEN RELIEF RESOURCES LLC
DUBAI - TEL: +971-4-227 5445 - E-MAIL: grrl@emirates.net.ac
KABUL - TEL: +93-70-276537 - E-MAIL: grrl/kabul@hotmail.com